High Throughput 16-bit MACs Using Residue
Number System and Pipelining

Chris Henk
cahenk@smu.edu

Abstract—In this paper, we present two specialized designs
for high throughput multiply accumulate units (MACs). Current
machine vision algorithms rely heavily on fast MACs to perform
the dot product operations in Convolutional Neural Networks.
Often, 16-bit floating points offer sufficient precision, but existing
designs consider wider MACs that perform suboptimally. We
propose specialized residues that leverage the lesser dynamic
range requirements in this application and provide proof of
concept designs. The designs are implemented with fast logic
that would be inordinately expensive to use with larger values.
Our findings indicate that small residue MACs can improve
throughput by 10.5% at just 33.5% additional area despite using
FGPA’s, which are unfavorable to the design. We conclude that
our design has superior performance characteristics to typical
MAC:s in hardware accelerated machine learning applications.

I. INTRODUCTION

Machine vision is an integral component of many artificially
intelligent products on the market today. These algorithms are
typically implemented using Convolutional Neural Networks
(CNNs), which rely heavily on matrix multiplication and
convolution operations. These operations can be performed in
parallel and use large data sets. Arrays of Multiply Accumulate
Units (MACs) are used to take the sum of many products with
high performance. Since latency is not a major performance
factor, hardware designs should be designed to maximize
throughput.

In CNN-based machine vision tasks, half precision 16-
bit floating point values can be used with little impact on
classification accuracy while using far less memory than
full precision values. Consequently, many developers choose
to lower memory utilization by truncating values. Existing
residue number system (RNS) MACs are designed for wider
inputs and must pad the input data. In addition to wasting
hardware, this also leads to suboptimal performance. When de-
signing an RNS, delay trade-offs must be made to support the
required dynamic range and implement the arithmetic circuitry
within cost constraints. If less dynamic range is required, the
RNS can be specialized to support fast arithmetic operations
without dramatically increasing costs. The critical path can be
reduced to just a handful of gate delays which, when combined
with pipelining in larger operations, dramatically improves
throughput.

This paper presents two distinct sets of residues that have
been selected to be compatible with efficient arithmetic hard-
ware units. One set is optimized for use in hybrid carry-
look-ahead (CLA) modulo adders that utilize lookup tables
(LUTs) to perform efficient modulo operations while the other

set is optimized for use in pure LUT-based modulo adders.
Each set contains just 4 residues ranging from 4-bits to 2-
bits in size. The smallest possible values are used to reduce
the number of address lines required for the LUTs. The one
exception is the largest residue in the CLA/LUT design, which
leverages wiring to perform modulo 2" operations for free.
This has important implications for both the area and delay
characteristics of the LUTs. Delay is reduced to less than that
of the CLA addition operation which, with proper pipelining,
eliminates the typically expensive modulo operation from the
critical path of the design. Storing fewer table entries has an
obvious positive impact on area. The LUTs must be as small as
possible since the design makes extensive use of them in both
the modulo adders and, consequently, the modulo multipliers.
The overall area complexity required to implement the design
is primarily a function of LUT size.

Because latency does not have any significant impact on the
performance of our hardware in this application, the design
optimizes for throughput. This is accomplished by reducing
each operation to only a handful of gate delays and placing
registers between them to allow for pipelining. Small residues
are highly amenable to this goal because carry propagation
delay is minimal in arithmetic logic and they produce simpler
LUTs. Modulo operations, one of the more expensive portions
of RNS arithmetic designs, can therefor be accomplish at high
speed with low area costs.

Our proof of concept design implementation and testing
verify the correctness of the arithmetic operations and eval-
uates the performance of the proposed designs. The pure LUT
design is demonstrated to offer no performance benefits over
industry standard, high throughput MACs when implemented
in two competing FPGA architectures. The hybrid CLA/LUT
design is shown to offer significant performance improvements
over conventional designs with little additional area required.
Because the critical path of RNS encoding is the modulo
add operation, encoding will not require the frequency to be
decreased. RNS decoding performance is neither helped nor
harmed by our optimizations and any delay inconsistencies
can be resolved by performing decode operations only once at
the end of computation and/or by introducing minor controller
logic to multiple decoder units.

While the proof of concept failed to demonstrate that the
pure LUT based MAC was superior to industry standard
implementations, it is possible that it would perform better
under real world circumstances. This circuitry is intended to be
realized using emitter coupled logic (ECL) technology, which
would enable superior LUT performance at reduced cost with
wired ORs. Future work utilizing tooling that supports ECL

realization could investigate if the outcome would change.
The hybrid CLA/LUT design is faster than industry standard
methods with an additional cost low enough to justify its
use in high performance applications. By supporting efficient
encoding and not harming the decoding process the high
performance modulo adders can be integrated into pipelined
MACs without increasing delay.

The remainder of this paper is organized as follows. In
Section II we provide an overview of residue number systems.
Section III reviews related work on implementing fast MACs
with RNS. In Section IV we introduce our novel MAC and
the associated RNS scheme. Section V discusses our proof
of concept design. In Section VI we show how the design
was verified and performance metrics were acquired. Section
VII contains an analysis of the performance testing. This is
followed by our final conclusions in Section VIII.

II. RESIDUE NUMBER SYSTEM

A variety of computational tasks require the device to take
the sum of many products with high performance. This opera-
tion can be efficiently performed using a multiply accumulate
unit, which computes a < a + (b* ¢). Because there are mul-
tiple operations, MACs are ideal candidates for optimization
using residue number system (RNS) representations internally.
Matrix multiplication and convolutions (which are used in
neural networks) exhibit high degrees of data parallelism and
create long input queues. Consequently, they pair well with
deep pipelines that dramatically increase throughput at the cost
of some latency. This limits the overhead of RNS conversion
even further since decoding is only strictly necessary after a
large number of MAC computations have been performed.
Carefully chosen residues allow the necessary computations
(modulo, for instance) to be performed more efficiently than
is possible in general purpose arithmetic circuitry that must be
capable of performing the operation given arbitrary inputs.

Residue number systems improve arithmetic performance by
reducing the amount of carry propagation and, therefore, the
critical path of the circuit. Instead of being defined by a single
radix (i.e. a radix polynomial system), an RNS is defined by an
n-tuple of integers called residues (mq|ms|...|my) [8]. In this
system, numbers are represented as the n-tuple of results from
the modulo of the number and each corresponding residue.
That is, a number X in the RNS (mq|mz]|...|m,) is defined
as: X = (z1|za|...|xn) where x; = X mod m;. This allows
us to represent a large number as several small residues which
can be processed in parallel, reducing the maximum carry
delay to that of the largest residue which increases perfor-
mance for adders and, therefor, multipliers [7]. While there is
some conversion overhead for encoding to and decoding from
RNS, for large numbers it is more than accounted for with
faster arithmetic [2]. Additionally, in a MAC the overhead
only occurs once for every two operations, versus once for
every operation in an RNS based adder or multiplier. Decode
penalties can be further mitigated in repeated operations by
delaying the decode until the complete sequence of operations
has been performed.

III. RELATED WORK

MAC:s using RNS internally have been extensively studied
in the Literature. Like conventional MACs, RNS MACs have
been demonstrated to benefit from basic pipelining between
arithmetic units. Low-level pipelining has also been shown to
produce increases in throughput, provided that the depth of
the pipeline is acceptable for the given use case [5]. In such
cases, fast multiplication is achievable through staging simple
modulo adders. As a result, the throughput of the MAC is
determined by the critical path of the modulo adder. Modern
designs tend to refine either the modulo adder / modulo
multiplier subcomponent of the architecture or apply changes
that optimize for a specialized use case [3].

For instance, the generalized architecture proposed by
Preethy et. all shows how an arbitrary set of residues can
be combined with logarithmic representation lookup tables
to eliminate multiplication altogether [6]. This approach pro-
vides fast computation, but requires several large ROMs to
implement logarithmic conversions efficiently. Because a large
dynamic range is supported, the tables must necessarily contain
many inputs. If smaller residues could be used instead, these
tables would become much smaller. In fact, it would become
feasible to skip the addition step entirely and replace the log
encode, add, log decode process with a single table lookup.

Specialized designs have the obvious limitation of being
suitable only for the narrow application for which they were
created for. This limitation is compounded when specialization
is based on the expected input and/or output data values
rather than the broader arithmetic operation. Specializing to
arithmetic operations splits the difference because they receive
the performance benefits of specialization while being poten-
tially applicable to multiple problems. The authors of [4], for
instance, use an improved reduction method where a special
kind of RNS pair is selected that reduces outer reduction
delay in elliptic curve operations. The benefits of the design
are limited to elliptic curve arithmetic, but there are multiple
cryptographic problems that can leverage it. Similarly, a RNS
MAC specialized for performing dot products on large vectors
of small values could apply to any problem that requires such
an computation to be made.

Existing work focuses on large input, generalized implemen-
tations of RNS MACs. While some specialized circuity exists
for certain digital signal processing (DSP) applications that use
smaller input sizes, they are tuned according to the distribution
of inputs expected for their given application. Many machine
learning applications implementing convolutions neural net-
works can achieve sufficient accuracy with 16-bit (i.e. half
word) inputs. Half word values can represented in RNS using
extremely small residues (4-bits or less), but the potential
benefits have yet to be explored in the Literature. Given that
the critical path in most RNS MACs is the modulo adder,
the shorter critical path achieved by using smaller residues
provides an opportunity for greater throughput to be achieved
than when the design must be constrained to support a larger
dynamic range. A smaller valued, high performance design
will allow more computations to be performed in parallel on
a single chip at a higher performance.

IV. MULTIPLY ACCUMULATE UNIT

We implement two versions of the small residue optimized
design and compare their performance and cost characteristics.
Arithmetic circuits that use RNS require three separate com-
ponents: a binary to RNS encoder, the arithmetic circuitry,
and a RNS to binary decoder. Thus, in order for RNS to be
useful in real world scenarios the encode/decode circuity must
be efficient. We use standard practice parallel encoder/decoder
using LUTs and, in the case of the decoder, the CRT method
to meet this requirement. The critical path of standard RNS
encoding is the modulo adder, as is the critical path of the
proposed MAC. Since the design is pipelined and the critical
path of the two components is identical, the throughput gains
achieved through our design will not be starved of inputs or
require additional encoding units to maximize utilization. The
decode operation involves an expensive modulo operation that
could potentially increase delay. This can be dealt with by
either introducing simple controller logic where a value is only
decoded when a flag marking the end of an input vector is set
or by providing multiple decoder units to keep the rest of the
components at maximum utilization. The MAC unit itself is
comprised of an array of modulo multipliers, modulo adders,
and accumulation/pipeline registers. Figure 2 details the design
of an individual residue unit in the array.

E— Residue MACs E—
RNS Encoder RNS Decoder

Fig. 1. Typical 3-Stage Residue Number System Multiply Accumulate Unit

Since these operations do not need to impact the perfor-
mance of the arithmetic portions of our MAC, they are not
within the scope of this research and excluded from our
prototype. Similarly, floating point operations are implemented
using fixed point circuitry with some additional controller
logic. The delay of the calculation is dependent on the delay of
the underlying computations. Since floating point overhead is
independent of the underlying arithmetic, it too is considered
to be outside the scope of this research. In IEEE 754, a 16-
bit half word floating point uses an 11 bit significand. This
is the component with the largest delay, so our prototype
implements an 11-bit RNS MAC to determine the theoretical
performance figures of the complete design [1]. We propose
two sets of residues, each of which is optimized for efficient

implementation with a different modulo addition algorithm.

X; Y,
Modulo Multiplier

Modulo Adder]

'
Out

Fig. 2. Multiply Accumulate Unit with Pipelining

A. Pure LUT Modulo Adder

The pure LUT modulo adder is the simplest subcomponent
of the design. The modulo table for an addition operation of
order m; + m; requires |log(m;)| + 1 address bits. Whereas
the modulo addition table for an addition operation of order
m; + m,; requires 2[log(m;)| address bits. Since the largest
residue mg = 9 the worst case table requires just 3 additional
address lines. Thus, especially if the implementation technol-
ogy can efficiently implement tables, it is feasible to skip the
addition all together. With larger tables the delay would grow,
but more importantly the area requirements would grow far
too expensive. With these considerations taken into account,
we propose the RNS (9(8]7]5).

B. Hybrid CLA/LUT Modulo Adder

Traditional fast adders are not costly when the number of
bits remains low. Also, the cost of performing modulo is low
because a small lookup table for an addition operation of order
m; + m; requires |[log(m;)| + 1 address bits. We can also
leverage the fact that taking some modulo m = 2" can be done
for free through wiring. Thus, we can pick a larger residue of
that order and then use a few additional registers to construct a
hybrid CLA/LUT modulo adder offers both high performance
and low area characteristics. For the purposes of this prototype,
we propose the RNS 16|9|7|3). Given that CLA arithmetic
delay does not scale linearly, it may be better to chose a 2"
residue that is far larger than the other residues. Determining
the ideal residues for such an arrangement is a potential topic
for future research. In particular, the goal would be to find a
residue such that the residue 9 term could be made smaller and
that the additional CLA logic had less delay than the modulo
table for residue 9. This is because the residue 9 modulo table
ends up being the critical path of the design.

C. Modulo Multiplier

Our design uses parallel shift and add multipliers. The
shift operation is performed using small, n-entry LUTs, one
for each bit, that have precomputed modulo shift values. An
additional mux connected to ground is used to handle the
0 case. The partial products are then combined in log(n)

adder stages. The modulo adders, which are the critical path
in the pipelined design, perform their computations in just a
few gate delays. This design is much simpler than typical
multipliers, but doesn’t make speed trade offs to achieve
simplicity because the adder tree is only 1-2 stages of fast
adders. The only difference between the two multiplier designs
are the values in the precomputed LUTs and the adder trees,
which vary according the residue m;and the number of residue
bits [log(m;)] respectively.

Xi
J
wr]
-
\ — "\

Modulo Adder

Modulo Adder

4-bit Parallel Shift and Add Modulo Multiplier

Modulo Adder

Fig. 3.

V. IMPLEMENTATION

The design would ideally be realized using emitter-coupled
logic (ECL). ECL is a common choice for high performance
designs, but the specifics of our design are particularly well
suited for this technology. High speed transistor state changes
create low gate delays, which improve frequency. Since our
design uses large amounts of pipelining it’s critical path is
relatively short, meaning that gate delay has a significant effect
on the max frequency. ECL also supports high fanout and the
wired OR gate. These qualities improve the efficiency and
speed of the large multiplexers that are used to implement
the many LUTs in our design. ECL’s main downside is
increased power utilization, but this is not a concern for high
performance applications with access to mainline power.

However, while constructing the prototype we were limited
to using FPGAs supported by our tooling. Considering this is
a proof of concept phase, and that our performance figures
are equal or lesser to what would be seen with an ECL
realization. Therefore any conclusions reached in favor of our
design will be applicable to real world, ECL implementations.
Modern FPGAs are fast enough for use in market products
that would benefit from hardware acceleration but can not
justify the immense expense of fabricating custom chips. It
is common to see them in portable devices and some cloud
hosting providers now even offer FPGA products. In addition
to being an acceptable model for determining the efficacy of
our design, it also shows how the design could potentially be
used in FPGAs should a product benefit from it without being
able to justify purchasing custom hardware to incorporate it.

VI. DESIGN VERIFICATION AND PERFORMANCE TESTING

Test vectors were developed for the different levels of the
design hierarchy: full design, modulo adders, residue multipli-

ers, and shift LUTs. Because the chosen residues are small,
many of the sub-components could be checked for complete
correctness by brute force testing every possible input signal.
This was done for the pure LUT modulo adder, the modulo
LUTSs in the hybrid modulo adder, and for the shift LUTs.
Tables can be incredibly tedious to produce Verilog for by
hand, so they were grammatically generated using a basic
python script. The correctness of the data values are ensued
by the script and tables are synthesized from case statements,
so proper of implementation of the tables themselves is guar-
anteed. In a real world implementation, similar testing could
be done for the individual residue multipliers and adders, but
we chose instead to pick representative samples. Once the
complete MAC, which is stateful, is considered it becomes
impractical to perform brute force testing and representative
samples must be chose instead. Samples were chosen from
input classes small, large, zero, etc. with consideration given
to ensuring that modulo rollover was verified.

Performance testing of our two designs and a control
design were performed on two simulated FPGAs: the MAX
I EPM570F100C4 and the Stratix II EP2S15F672C3. These
devices have different performance levels and different archi-
tectures. By including both the results are more representative
of how the designs will perform against the control on FPGAs
more generally. The control design is a basic pipelined MAC of
the kind in Figure 2 that was implemented using "LPM Mega-
Functions” under the fast setting. These library components are
fast modules meant to simplify designing fast circuits and are
reflective of current industry standard performance figures.

VII. PERFORMANCE ANALYSIS

Table I shows the performance and cost metrics for the
competing designs on the MAX II FPGA, while Table II
shows the performance and cost metrics for the competing
designs on the Stratix II FPGA. In both tables, delay is
measured in nanoseconds, frequency is measured in megahertz,
and area is measured in logic elements. Our results show
that the pure LUT design had a higher delay than initially
anticipated, and actually performed worse than the industry
standard implementation. As a result the full circuit was not
considered, so the area measurements are only for the modulo
multiplier and not for the entire MAC. This is not useful
for comparison purposes, so the values were excluded from
the table. While the pure LUT design was unsuccessful, the
hybrid design was not. As the table shows, the hybrid design is
significantly faster the the LPM based design is. On the Max
IT the 10.5% improvement does come at the cost of 33.5%
additional area, but the amount is quite modest in comparison
to the speedup that was achieved. The Stratix II receives a
larger 24.76% performance improvement, but at a far greater
area cost of 472% in ALUTs and 318% in registers, which
brings diminishing returns into question.

H Design Delay (ns) Frequency (MHz) Area (aggregate) ”
Pure 7.294 127.06 —
Hybrid 4.170 210.7 251
LPM 4.670 190.62 188
TABLE 1L PERFORMANCE COMPARISON - MAX IT EPM570F100C4

H Design Delay (ns) Frequency (MHz) Area (aggregate) ”
Pure 1.726 579.37 —
Hybrid 1.369 730.46 126
LPM 1.709 585.14 22
TABLE II. PERFORMANCE COMPARISON STRATIX IT EP2S15F672C3

VIII.

The proof of concept failed to demonstrate that our pure
LUT design was superior to standard methods. There are
multiple potential explanations for this. The first is that fast
arithmetic is more efficient in terms of delay than a lookup
table because the number of address bits is too high. Another
potential explanation is that the FPGA technology was unable
to efficiently implement the tables, but that if it were imple-
mented in a more suitable technology such as ECL we would
observe different performance figures. Finally, there may be
a better way to implement the table in Verilog and/or a more
sophisticated synthesis tool may be able to find a more efficient
way to implement it. Determining which of these potential
explanations is correct is a potential topic for future work.

Our hybrid design produced better performance metrics at a
marginally increased cost over conventional MAC implemen-
tations. Our testing methodology provides a proof of concept
of the performance benefits at the worst case delay the design
would encounter and did so in a technology that is usable in
existing products. Additionally, there is evidence to suggest
that the results could be improved to an even greater degree in
applications that warrant custom chip fabrication. Large com-
pute clusters employing our design could accelerate machine
vision training tasks in data centers. Future work refining the
design, the chosen residues in particular, could be done to
extract additional performance. While the model suggests a
full scale design should be viable, after any improvements are
made the concept should be developed into a full scale 16-bit
floating point unit to bring the design to market.

CONCLUSIONS

REFERENCES

[11 IEEE standard for binary floating-point arithmetic. Institute of Electrical
and Electronics Engineers, New York, 1985. Note: Standard 754—1985.

[2] HOHNE, R. A., AND SIFERD, R. A programmable high performance
processor using the residue number system and cmos vlsi technology. In
Proceedings of the IEEE National Aerospace and Electronics Conference
(May 1989), pp. 41-43 vol.1.

[3] LEE, S.-M., CHUNG, J.-H., YOON, H.-S., AND LEE, M. M.-O. High
speed and ultra-low power 16/spl times/16 mac design using tg tech-
niques for web-based multimedia system. In Proceedings 2000. De-
sign Automation Conference. (IEEE Cat. No.OOCH37106) (June 2000),
pp. 17-18.

[4] Mo, Y., AND L1, S. Fast rns implementation of elliptic curve point mul-
tiplication in gf(p) with selected base pairs. In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL) (Sept
2017), pp. 1-6.

[5] PIESTRAK, S.J., AND BEREZOWSKI, K. S. Architecture of efficient rns-
based digital signal processor with very low-level pipelining. In IET Irish
Signals and Systems Conference (ISSC 2008) (June 2008), pp. 127-132.

[6] PREETHY, A. P., RADHAKRISHNAN, D., AND OMONDI, A. A high
performance rns multiply-accumulate unit. In Proceedings of the 11th
Great Lakes Symposium on VLSI (New York, NY, USA, 2001), GLSVLSI
01, ACM, pp. 145-148.

(7]

[8]

R, D., V, B., SAHOO, S. K., SAMHITHA, N. R., CHERIAN, N. A., AND
JACOB, P. M. Implementation of floating point mac using residue number
system. In 2014 International Conference on Reliability Optimization
and Information Technology (ICROIT) (Feb 2014), pp. 461-465.

SODERSTRAND, M. A., JENKINS, W. K., JULLIEN, G. A., AND TAY-
LOR, F. J., Eds. Residue Number System Arithmetic: Modern Applica-
tions in Digital Signal Processing. 1EEE Press, Piscataway, NJ, USA,
1986.

